Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS
0607/62
Paper 6 (Extended)
February/March 2022
MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to cao correct answer only dep
fependent	
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer					Marks	Partial Marks
A	INVESTIGATION SEQUENCES OF CENTRES					YGONS	
1(a)(i)						1	
1(a)(ii)	Pattern number, n	2	3	4	5	2	B1 for 25 or their $25+16$
	Number of dots 1	5	13	25	41		
1(a)(iii)	$\begin{aligned} & 61 \text { seen } \\ & \text { or } 41+20+24 \\ & \text { or } 162024 \end{aligned}$					C1	FT their 41
	85					1	
1(b)(i)	Correct diagram					1	
1(b)(ii)	Pattern number, n	ber osses		num		2	B1 for two columns FT their dots and their crosses for the last column.
	4	6		25			
	5	6		41			
	6	6		61			

Question	Answer						Marks	Partial Marks
1(b)(iii)	Pattern	Dots	Crosses \quad T	Total number			2	B1 for 5 cells correct or for the total column correct FT their values in (b)(ii)
	4	$9=3^{2}$	$16=4^{2}$	$4^{2}+3^{2}=25$				
	5	$25=5^{2}$	$16=4^{2}$	$5^{2}+4^{2}=41$				
	6	$25=5^{2}$	$36=6^{2}$	$6^{2}+5^{2}=61$				
1(b)(iv)	$n^{2}+(n-1)^{2}$ isw						2	B1 for n^{2} or $(n-1)^{2}$
1(b)(v)	$\left[n^{2}+(n-1)^{2}\right]=n^{2}+n^{2}-n-n+1=2 n^{2}-2 n+1$ oe						1	
1(b)(vi)	$\begin{aligned} & 2 \times 15^{2}-2 \times 15+1 \\ & \text { or } 15^{2}+14^{2} \\ & \text { or correct extension of sequence } \end{aligned}$						C1	
	421						1	
2(a)	For sketching Pattern 4 or for differences 36912						C1	
	Pattern number, n		1	3	4	5	2	B1 for 19 B1 for 31
	Number of dots		1	0	19	31		
2(b)(i)	One second difference of 3 seen and $2 a=3$						1	
2(b)(ii)	Forming two equations in b and c. or $\left[\frac{3}{2} n^{2}=\right] 1.5,6,13.5,24$						C1	
	Correct method to find b or c. or remaining terms are $-0.5,-2,-3.5,-5$						C1	
	$\begin{aligned} & b=-1.5 \\ & c=1 \end{aligned}$						2	B1 for each
2(c)	$1.5 k^{2}-1.5 k+1=571$						C1	FT their b and c
	Attempt to solve their quadratic equation correctly						C1	Sketch of their quadratic or factorisation attempt for their quadratic or correct formula
	Solution(s) marked on sketch or a correct factorisation or correct substitution into formula						C1	FT their quadratic equation
	20						1	

Question	Answer	Marks	Partial Marks
3	$\begin{aligned} & {[n=] 3} \\ & {[\text { Number of dots }=] 19} \end{aligned}$	3	B2 for $n=3$ or B1 for $3 n^{2}-3 n+1$ $=2 n^{2}-2 n+1+6 \text { oe }$ or for table of hexagon values
B	MODELLING DAYLIGHT HOURS		
4(a)	10h 19min 10.3 or awrt 10.32	2	B1 for 10h 19min or correct decimal from their 10h 19min.
4(b)(i)	Correct point (10, their 10.3) plotted	1	FT (10, their 10.3)
4(b)(ii)	(shortest day) 7.8 (longest day) 16.6	1	
4(b)(iii)	$\frac{7.8+16.6}{2}$	1	
5(a)	their10.3-12.2	1	
5(b)(i)	Amplitude or its description $=4.4$ or $\frac{16.6-7.8}{2}=4.4 \mathrm{oe}$	1	
5(b)(ii)	[Period] $360 \div 12=30$ oe	1	
5(c)	$4.4 \sin 30 x+12.2$	1	
5(d)(i)	$\begin{aligned} \text { One of } \begin{aligned} x & =1 \text { [for April] } \\ x & =10 \text { [for January] } \end{aligned} \end{aligned}$	C1	
	$\begin{aligned} & 4.4 \sin 30+12.2 \\ & \text { or } 4.4 \sin 300+12.2 \\ & \text { or } x=1 \text { or } x=10 \text { shown on sketch of } \\ & H=4.4 \sin 30 x+12.2 \end{aligned}$	C1	FT their H FT their x if stated
	[April] 14.4	B1	
	[January] 8.4 or 8.39 or 8.38[...]	B1	
5(d)(ii)	No, because two values are insufficient to make that claim oe	1	FT their 5(d)(i) and condone Yes, because both are close to the actual values oe or No, because their values are very different oe
5(d)(iii)	The months are all the same length oe	1	

Question	Answer	Marks	Partial Marks
6	$B=30$ soi	1	
	14 h 35 min and 14.6 [h] or $14.58[\ldots]$ 9 h 45 min and 9.8 or 9.75 [h]	C2	C1 for both h and min or both decimals correct in each month or for one month completely correct
	$C=12.2 \mathrm{soi}$	1	FT their decimal hours
	$\begin{aligned} & 14.6-12.2 \\ & \text { or } 12.2-9.8 \\ & \text { or } \frac{14.6-9.8}{2} \end{aligned}$	C1	FT their decimal hours and their C.
	$\begin{aligned} & A=2.4 \\ & H=2.4 \sin 30 x+12.2 \end{aligned}$	1	FT their values if calculation seen
7(a)	Substituting $x=9$ or $\sin (30 x)=-1$ or amplitude $=2$ oe and 12.2-2 or sketch of graph with minimum marked	C1	If 0 scored, SC1 for substituting 10 to get 10.5
	10.2	1	
7(b)	21 December	1	
8(a)	Graphs correctly labelled Cairo and Melbourne.	C1	
	Correct sketch.	2	B1 for correct shape with intersections at $x=0$, approx. 6,12 and approx halfway between horizontal axis and 15 B1 for correct shape with amplitude (Melbourne) > amplitude (Cairo)
8(b)	It is the longest day oe or There are 14.6 h of daylight oe	1	
8(c)	21 March 21 September	2	B1 for each If 0 scored: SC1 for 0 and 6 or 6 and 12 seen or for March and September

